nanovva:

One of ham radio's most useful tools

What is the nanoVNA?

- It is a small, inexpensive VNA (Vector Network Analyzer)
- In an electronic network (circuit), it can be used to measure:
 - Impedance
 - Reflection coefficient
 - Transmission coefficient
- In ham radio, we use it for:
 - Testing antennas (SWR)
 - Tuning filters
 - Measuring cable loss

Procuring a nanoVNA

- They typically cost \$60 and are available from:
 - Gigaparts
 - R&L Electronics
 - Amazon (AURSINC store only beware of clones!)
 - https://nanovna.com/?page_id=121
- The kit includes:
 - nanoVNA (obviously)
 - 3 calibration connectors (open, short, and 50 Ohm)
 - Stylus
 - Short connection cables (USB A to C, small coax SMA cables)

Using your nanoVNA

- The nanoVNA has a touchscreen along with a stylus
- While this may be fine for quick, in-the-field antenna sweeps for youngish eyes, the screen can be hard to see in direct sunlight or if you have large digits
- I highly recommend a piece of software called nanoVNA Saver
 - Allows you to use/control your nanoVNA from your PC
 - Larger screen, can save plots, easier-to-use controls!
 - Simply plug your nanoVNA's USB cable into it and your computer and go!

0101

- https://github.com/NanoVNA-Saver/nanovna-saver
- Practically everyone logs on a computer (even in the field!)

nanoVNA Saver

Downloading nanoVNA Saver

• On the GitHub page, there is a link on the right-hand side called

Downloading nanoVNA Saver

• Click the "Latest" link and then click either Windows or Linux

Contributors	
😵 🛟 🏟 🐻	
hvegh, asarhaddon, and 2 other contributors	
▼Assets 4	
ONanoVNASaver.linux_modern.zip	94.2 MB
WanoVNASaver.win.x64.zip	80.1 MB
Source code (zip)	
Source code (tar.gz)	
2 2 1 3 people reacted	

Using nanoVNA Saver

- Inside the zip file is a selfcontained executable – just double-click the .exe file and it starts up nanoVNA Saver
- In the lower left-hand corner, click Connect and choose the COM port that corresponds to your nanoVNA (connecting to computer with USB cable enumerates the nanoVNA as a COM port to the computer)

 Serial port	Rescan	
Connect to	NanoVNA	
Files	Calibration	
Display setup	About	

Calibrating your nanoVNA

- The first time you use your nanoVNA, you <u>must</u> calibrate it
- Before calibration, set your start frequency to be the lowest you intend to measure (say, 3.5MHz for 80m) and the stop frequency to be the highest frequency you intend to measure (say, 30MHz for 10m)
- Once you have calibrated the nanoVNA, you don't need to recalibrate unless the ambient temperature where you are using the nanoVNA changes
 - Moving from indoor to outdoor
 - Vice-versa
- Calibration will use each of the three calibration connectors
- On nanoVNA Saver, just click Calibration and the Calibration window will open

Calibration window

Active calibration Calibration: Device calibration Source: NanoVNA	Calibration standards Use ideal values Short	This calibration assistant will help you create a calibration in the NanoVNASaver application. It will sweep thestandards for you, a guide you through the process.
Calibrate	L0 (H(e-12)) 0	available, and the cables you wish to have calibrated with the de connected.
Short Uncalibrated	L1 (H(e-24)) 0	If you want a 2-port calibration, also have a "through" connector hand.
Open Uncalibrated	L2 (H(e-33)) 0 L3 (H(e-42)) 0	The best results are achieved by having the NanoVNA calibrated on-device for the full span of interest and sav
Load Uncalibrated	Offset Delay (ps) 0	save slot 0 before starting.
Through Uncalibrated	Open	Unce you are ready to proceed, press OK.
Thrurefl Uncalibrated	C0 (F(e-15)) 50	OK Can
Isolation Uncalibrated	C1 (F(e-27)) 0	
	C2 (F(e-36)) 0	Calibrate short ×
Offset delay 0.00 ps	C3 (F(e-45)) 0	Please connect the "short" standard to port 0 of the NanoVNA.
Calibration assistant	Offset Delay (ps) 0	Press Ok when you are ready to continue.

Just follow the calibration wizard

- You will connect the calibration connectors to Port 0 (which is also called CH0 or S11 on the nanoVNA)
- You start with the short (as in 0 Ohm impedance) connector
- You will then proceed to the open (infinite impedance) connector, then load (50 Ohm impedance).
- You can then click Apply to finish the oneport calibration

Calibration

- You can save the calibration data to your computer on the Calibration window if you want
 - However, the calibration data is already saved on the nanoVNA
 - If you frequently move between outside and inside, it might be convenient to have calibration files for each climate saved on your PC
- You can now close the Calibration window to return to nanoVNA Saver

Changing your display settings in nanoVNA Saver

Marker 2 2 5MUs	Options				Chart colors	
Marker 2 3.5MHZ Marker 3 3.5MHZ Enable Delta Mark refere Hide data Locker	Return loss is:	 Negative Positive Displays a thin line be Black background with 	tween data poin n white text	Its	Use custom chart colors Chart background Chart foreground	
TDR	Sweep color				Chart text	
Estimated cable length: 296.692	Second sweep color				Font	
Time Domain Reflectometry .	Reference color Second reference color Point size Line thickness Marker size			2 px 🔹 1 px 🔹 8 px 🕏	Font size 8 Bands Show bands Chart bands	
	Show marker number	rs Displays the marker n	umber next to t	he marker	Manage b	pands
Reference sweep Set current as reference	Filled markers Shows the marker as a filled triangle Data point is: At the center of the marker At the tip of the marker			VSWR Markers		
Reset refe	Displayed charts				None	
Serial port control	S11 Real/Imaginary $ \sim $	S11 Return Loss V	None	~	Add	Remove
Port <u>DM7 (NanoVNA)</u> Reso Disconnect Man	S11 VSWR 🗸	S21 Gain ~	None	~		
	Markers					
Files Calibration	Add	Remove	Setting	s		
Display setup About						

Commonly-used plots in nanoVNA Saver

Reading a Smith chart

- The center of a Smith chart is 50 Ohms resistance (no reactance)
- Note that the three calibration plugs are on the "x axis" of the Smith chart
- The red arcs are constant impedance
 - Impedance is resistance plus reactance
 - As you leave the "x axis" of no reactance (all resistance), the resistance goes down and the reactance goes up to make constant impedance
- A tuner applies an opposite load to the antenna to make the radio think it's always at the origin of the Smith chart
- Wide arcs when sweeping a single band indicate a high Q antenna

Sweep settings

- Set your start and stop frequencies
 - Center and Span are calculated auto-magically
 - You can do all-band (3.5-30MHz) or single band, e.g. 20m (14-14.35MHz)
- Set your number of test points (segments)
 - ~100 is good, takes about 2 minutes to sweep
 - More points gives you more accuracy but takes more time (linear)
- If you click Sweep settings, you can make it run once or continuously
- Press Sweep to begin the sweep

Markers

- There are three markers that you can use to mark certain frequencies on all the plots
- This helps you to identify specific frequencies of interest to see their VSWR, Q, Reflection loss, and point on the Smith chart
- You can either enter the frequency, or click a point on one of the plots

Markers	
Marker 1	3.5MHz 📕 🔾
Marker 2	3.5MHz 📘 🔵
Marker 3	3.5MHz 📘 🔿
Enable Delt	a Mark 🗌 reference
Hide da	ta Locked 🔾
TDR	
Estimated cable	e length: 296.692m
6	

Time Domain Reflectometry

- TDR is used to measure the length of coax
- You must know the velocity factor of your coax
 - There are a list of various coax types in a drop-down list
 - You can create your own custom velocity factor

Polyethylene (0.66))			~
Velocity factor	0.66			
Estimated cable len	gth: 296.692m	n (973ft 4.8in)		
TDR 52.5				ĺ
51.5				
50.5				
49.6				
48.6				

Accuracy

- Is it as accurate as, say, a Rohde & Schwarz VNA?
 - No, but it's close enough for ham work
 - It's also 3 orders of magnitude cheaper
- Testing my fully-extended vertical on 40m
 - nanoVNA indicated SWR was 2.93 pretty much across the 40m band
 - However, my 991A wouldn't tune it as it saw it as above 3
 - 30m was indicated to be about 2.5 and would tune with 991A
 - 20m and up were indicated to be sub-2:1 SWR
 - Probably off around 3%-5%
 - Close enough to find resonant lengths of the vertical for various bands
- TDR is not very accurate, sadly

Demonstration